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Fluid effects can induce strong coupling between immersed spent nuclear fuel racks, when they
are subjected to earthquake excitations. Broc and co-workers found that such system can
display two-dimensional vibratory responses, even when external excitations are applied along
a symmetry axis of the system. Their analysis was supported by numerical computations, using
a finite element code developed at CEA (Saclay) which is well suited for fluid–structure-
coupled systems. The present paper was inspired by their work as a possible lighter
computational alternative. Here we develop a theoretical model which enables the
computation of fluid-coupling effects, subject to some simplifying assumptions: (i) three-
dimensional flow effects are neglected, (ii) gaps between the fuel assemblies (and between these
and the container) are small when compared with longitudinal length-scales. From these
assumptions, we postulate a simplified flow inside the channels, such that gap-averaged
velocity and pressure fields are described in terms of a single space coordinate for each fluid
channel. Using this approach, the flow can be formulated in analytical terms, enabling
effective computation of the dynamical response, of a multi-rack fluid-coupled system.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Understanding the complex dynamic behavior of immersed spent-fuel assembly
storage racks under earthquake conditions is of prime importance for the safety of nuclear
plant facilities.
Fluid effects can induce strong coupling between immersed nuclear fuel racks, when

they are subjected to earthquake excitations [see for instance, Stabel et al. (1993) or Broc
et al. (2000)]. Here, we develop a simplified theoretical model which enables the
computation and understanding of the fluid-coupling forces. Our simplified model does
not take into account friction sliding, uplifting or sloshing effects. As noted by Broc et al.
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(2000), sloshing effects can be neglected because usually there is a large depth of water over
the racks in storage pools. Our formulation is subject to the following additional
simplifying assumptions: (i) three-dimensional flow effects are neglected, (ii) gaps between
the fuel assemblies and between these and the container are small when compared with
longitudinal length-scales.
The simplified flow model proposed in the present work is much less computer-intensive

than finite element formulations. Hence, the modal behavior and the vibratory responses
of the linearized system can be obtained without extensive programming effort. Other
advantages of the present approach include the easy integration of dissipative effects, as
well as a straightforward extension to address nonlinear flow terms.

2. MODEL FORMULATION

2.1. Fluid Formulation

Consider a pool with M � N nuclear spent fuel racks arranged in M lines and N columns,
which will be identified using matrix notation.
The dimensions along the principal directions of each rack are LX and LY . The Y- and

X-direction channels (between each pair of racks or between a wall and a rack) are
denoted as

HY
j ; 1� j � N þ 1 ðY-direction channelÞ; ð1Þ

HX
i ; 1� i � M þ 1 ðX-direction channelÞ: ð2Þ

In Figure 1 one can see the main geometrical parameters, for a quite general system
configuration.
The absolute positions of each rack ð *XXijðtÞ; *YYijðtÞÞ can be defined as

*XXijðtÞ ¼ X0
ij þ XijðtÞ; *YYijðtÞ ¼ Y0

ij þ YijðtÞ; ð3; 4Þ
Figure 1. Main geometrical parameters.
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where ðX0
ij ;Y

0
ij Þ are the coordinates of the geometric centers with respect to the pool

container and ðXijðtÞ;YijðtÞÞ are the local coordinates of each rack. So, the actual X-
direction hXand Y-direction gaps hY ; can be defined as

hX
ij ¼ HX

i þ Yi�1j � Yij ; for 1� i � M þ 1 and 1� j � N ð5Þ

and

hY
ij ¼ HY

j þ Xij � Xij�1; for 1� i � M and 1� j � N þ 1; ð6Þ

where

Y0j ¼ YMþ1j ¼ Xi0 ¼ XiNþ1 ¼ 0

by definition.
Following Antunes et al. (1996, 2001), a simplified flow model inside the vertical

and horizontal channels can be developed assuming that (i) three-dimensional flow
effects are neglected and (ii) the gaps between the fuel assemblies and between
these and the walls are small when compared with the longitudinal length-scales.
With this approach the flow inside each channel can be modelled as being parallel
and we can neglect the transverse gradient in the pressure. We define a gap-averaged
velocity as

uðz; tÞ ¼

R hðtÞ
0

vzðz;w; tÞ dw
hðtÞ

;

where z; w and vz stand, respectively, for the spatial coordinate along the channel length,
the transverse spatial coordinate and the corresponding component of the flow velocity.
The continuity equation, in each channel, can be formulated as

@h

@t
þ

@

@z
ðuhÞ ¼ 0; ð7Þ

where u ¼ uðz; tÞ and h ¼ hðtÞ stand, respectively, for the gap-averaged fluid velocity and
the channel gap. Observing similar arguments and the following additional simplification

u2h �
Z h

0

½vzðz;w; tÞ
2 dw;

the momentum equation in each channel, can be written as

r
@

@t
ðuhÞ þ

@

@z
ðu2hÞ

� �
þ tþ h

@p

@z
¼ 0; ð8Þ

where p ¼ pðz; tÞ stand for the pressure and t accommodates all the dissipative effects.
In this paper the dissipative stresses t are postulated to be of viscous nature,

t ¼ au; ð9Þ

where a is a proportionality constant. A minimal realistic value for this parameter, a can
be approximated relating it with the fluid dynamic viscosity m and the average channel gap.
For instance, assuming a parallel channel parabolic velocity profile V ; satisfying [see
Richardson (1989)]

vðwÞ ¼ �K
H

2m
w 1�

w

H

� �
; ð10Þ
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where K ; m and H stand, respectively, for a constant, the dynamic viscosity and the
average channel gap, one can deduce, comparing 2mðdV=duÞjw¼0 and au,

a ¼ 12
m
H
: ð11Þ

Using classical perturbation analysis and recalling equations (5) and (6) in which the
actual channel gap is separated into a steady term (mean gap) and small fluctuating term,
one can linearize the Navier–Stokes equations (7) and (8) about the mean gap. So,
equation (7), after linearization and integration, can be written for the Y- and X-direction
channels as

uX
ij ðx; tÞ ¼ �

ð ’YYi�1j � ’YYijÞ
HX

i

x þ CX
ij ðtÞ; for 1� i � M þ 1 and 1� j � N; ð12Þ

uY
ij ðy; tÞ ¼ �

ð ’XXij � ’XXij�1Þ
HY

j

y þ CY
ij ðtÞ; for 1� i � M and 1� j � N þ 1; ð13Þ

where CX
ij and CY

ij are functions of time stemming from the integration.
Also, linearized forms of equation (8) can be deduced for the X- and Y-direction

channels:

r ’uuX
ij H

X
i þ auX

ij þ HX
i

@pX
ij

@x
¼ 0; for 1� i � M þ 1 and 1� j � N; ð14Þ

r ’uuY
ij H

Y
j þ auY

ij þ HY
j

@pY
ij

@y
¼ 0; for 1� i � M and 1� j � N þ 1; ð15Þ

where pX
ij and pY

ij are the pressures in X- and Y-direction channels.
Integration of equations (14) and (15) yields

pX
ij ðx; tÞ ¼ �r

1

2

ð .YYij � .YYi�1jÞ
HX

i

x2 � r ’CC
X

ij ðtÞx � a
1

2

ð ’YYij � ’YYi�1jÞ

½HX
i 

2

x2 � a
CX

ij ðtÞ

HX
i

x

þ pX
ij ð0; tÞ;

for 1� i � M þ 1 and 1� j � N ð16Þ

and

pY
ij ðy; tÞ ¼ �r

1

2

ð .XXij�1 � .XXijÞ
HY

j

y2 � r ’CC
Y

ij ðtÞy � a
1

2

ð ’XXij�1 � ’XXijÞ

½HY
j 

2

y2 � a
CY

ij ðtÞ

HY
j

y

þ pY
ij ð0; tÞ;

for 1� i � M and 1� j � N þ 1: ð17Þ

The X- and Y-direction fluid forces acting (per unit length) on each rack can be found as
follows:

FX
ij ðtÞ ¼

Z LY=2

�LY=2
½pY

ij ðy; tÞ � pY
ijþ1ðy; tÞ
 dy;

FY
ij ðtÞ ¼

Z LX=2

�LX=2
½pX

iþ1jðx; tÞ � pX
ij ðx; tÞ
 dx;
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for 1� i � M and 1� j � N, that is,

FX
ij ðtÞ ¼ �r

ð .XXij�1 � .XXijÞ
HY

j

� a
ð ’XXij�1 � ’XXijÞ

½HY
j 

2

 !
L3Y
24

þ r
ð .XXij � .XXijþ1Þ

HY
jþ1

þ a
ð ’XXij � ’XXijþ1Þ

½HY
jþ1


2

 !
L3Y
24

þ ðpY
ij ð0; tÞ � pY

ijþ1ð0; tÞÞLY ;

for 1� i � M and 1� j � N; ð18Þ

and

FY
ij ðtÞ ¼ �r

ð .YYiþ1j � .YYijÞ
HX

iþ1
� a

ð ’YYiþ1j � ’YYijÞ

½HX
iþ1


2

 !
L3X
24

þ r
ð .YYij � .YYi�1jÞ

HX
i

þ a
ð ’YYij � ’YYi�1jÞ

½HX
i 

2

 !
L3X
24

þ ðpX
iþ1jð0; tÞ � pX

ij ð0; tÞÞLX ;

for 1� i � M and 1� j � N: ð19Þ

Note that in equations (16)–(19)

.XXij ¼ ’XXij ¼ 0; if i ¼ 0 or i ¼ M þ 1

and

.YYij ¼ ’YYij ¼ 0; if j ¼ 0 or j ¼ N þ 1;

as ðXijðtÞ;YijðtÞÞ are the relative coordinates of each rack.
Note also that, as a consequence of gap intersection effects, the velocity and pressure

expressions corresponding to equations (12), (13), (16) and (17) apply only at some
distance from the inlets/outlets. These singular dissipative effects could be modelled by
pressure drops at the gap intersections, however with a consequent increase in the model
complexity. For the purposes of our linearized approach, the linearized inlet/outlet losses
may be included through the global coefficient a in the empirical loss term t ¼ au.

2.2. Formulation of the Coupled System

Assuming that the racks are linear systems with structural mass Ms, damping Cs and
stiffness Ks, all these parameters being per unit length, one can deduce the following fluid–
structure model:

Ms
.XXij þ Cs

’XXij þ KsX ¼ FX
ij ðtÞ þ FX

ij;aut; ð20Þ

Ms
.YYij þ Cs

’YYij þ KsY ¼ FY
ij ðtÞ þ FY

ij;aut; ð21Þ

for 1� i � M and 1� j � N where FX
ij;aut and FY

ij;aut represent external autonomous
forces per unit length. Here, the structural parameters have been assumed identical for
both directions. However, dealing with asymmetrical systems brings no further difficulties
whatsoever.
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2.3. Formulation of the Complete system

Note that the 2� M � N equations (20) and (21) generated by this approach are not
sufficient to find all the corresponding unknowns which are summarized in Table 1.
However, between rack or rack/wall positions ij; ij þ 1; i þ 1j and i þ 1j þ 1, one can
establish the additional equations we need: ðM þ 1Þ � ðN þ 1Þ � 1 linearly independent
equations of compatibility of flow (mass conservation for all nodes but one), 4� M �
N � ðM � 1Þ � ðN � 1Þ linearly independent equations of compatibility of pressure (in all
corners of each rack except ðM � 1Þ � ðN � 1Þ corners) and finally, one last equation
setting a reference for the pressure.
Here are the compatibility equations of the flow

½ð ’XXiþ1jþ1 � ’XXiþ1jÞLY � 2HY
jþ1C

Y
iþ1jþ1


þ ½ð ’YYijþ1 � ’YYiþ1jþ1ÞLX þ 2HX
iþ1C

X
iþ1jþ1ðtÞ


þ ½ð ’XXijþ1 � ’XXijÞLY þ 2HY
jþ1C

Y
ijþ1ðtÞ


þ ½ð ’YYij � ’YYiþ1jÞLX � 2HX
iþ1C

X
iþ1jðtÞ
 ¼ 0; ð22Þ

for 0� i � M and 0� j � N. Note that we must disregard one of these equations in
order to obtain a set of ðM þ 1Þ � ðN þ 1Þ � 1 linearly independent equations. In fact, the
flow in a corner is completely determined by the flow in the remaining corners.
The equations of compatibility of pressure establish the following 4� M � N�

ðM � 1Þ � ðN � 1Þ relations

pX
ij ð�LX=2; tÞ ¼ pY

ij ð�LY=2; tÞ; ð23Þ

pX
ij ðLX=2; tÞ ¼ pY

ijþ1ð�LY=2; tÞ; ð24Þ

pX
iþ1jð�LX=2; tÞ ¼ pY

ij ðLY=2; tÞ; ð25Þ

for 1� i � M and 1� j � N, and

pX
iþ1jðLX=2; tÞ ¼ pY

iþ1jþ1ð�LY=2; tÞ; ð26Þ

for i ¼ M and 1� j � N; and for 1� i � M � 1 and j ¼ N.
Table 1

Number of unknowns

Unknowns Number

XijðtÞ MN
YijðtÞ MN
Ch

ijðtÞ ðM þ 1ÞN
Cv

ijðtÞ MðN þ 1Þ
ph

ijð0; tÞ ðM þ 1ÞN
pv

ijð0; tÞ MðN þ 1Þ

Total 6MN þ 2ðM þ NÞ
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Finally, X
i¼1;Mþ1

j¼1;N

pX
ij ð0; tÞ þ

X
i¼1;M

j¼1;Nþ1

pY
ij ð0; tÞ ¼ 0 ð27Þ

sets a reference for the pressure.
Again, observe that in equations (22)–(26), the following parameters must be

.XXij ¼ ’XXij ¼ 0; if i ¼ 0 or i ¼ M þ 1 and

.YYij ¼ ’YYij ¼ 0; if j ¼ 0 or j ¼ N þ 1:

In Table 2, we summarize the above-mentioned equations defining our linearized model
for the fluid-coupled vibratory responses of the system.
All these equations represent a set of differential–algebraic equations (DAEs). That is,

among those equations, some of them are pure algebraic constraints between unknowns.
Clearly, this is the case of equation (27). Note that this class of equations arises naturally
in many applications, but they present numerical and analytical difficulties which do not
occur with systems of ordinary differential equations (Brenan et al. 1988). In our case the
DAEs developed can be classified as a linear constant-coefficient differential–algebraic
system of equations, which can be shown to be of index one. The index is an invariant
parameter related to each system of DAEs, which is a ‘‘measure’’ of the singularity of the
system and so the degree of the numerical and analytical difficulties presented (Hindmarsh
& Petzold 1988). The higher the index, the more difficult is the DAE system to solve.
Fortunately, our model is not a higher-index system (that is, with an index bigger than
one).
Note that these equations can be written and established for generic systems of M � N

racks entirely in a symbolic computer environment as was done here for the tested cases.
As an illustration, we present in Appendix A the system model for a single rack generated
by an automated procedure.
For convenience one can reduce the order of equations (20) and (21) writing them as

Ms
’ZZij þ CsZij þ KsXij ¼ FX

ij ðtÞ þ FX
ij;aut; ð28Þ

Ms
’WWij þ CsWij þ KsYij ¼ FY

ij ðtÞ þ FY
ij;aut; ð29Þ

’XXij � Zij ¼ 0; ’YYij � Wij ¼ 0: ð30; 31Þ
Table 2

Equations of the linearized model for the fluid-coupled vibratory response of the system

Description Equation Number of equations

Coupled system ðXÞ (18) MN
Coupled system ðYÞ (19) MN
Compatibility of flow (20) ðM þ 1ÞðN þ 1Þ � 1
Compatibility of pressure (21)–(24) 4MN � ðM � 1ÞðN � 1Þ
Reference of pressure (25) 1

Total 6MN þ 2ðM þ NÞ
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3. NUMERICAL SIMULATIONS

Define the set of differential–algebraic equations corresponding to our model as

Fð’vv; v; tÞ ¼ 0; ð32Þ

where v is the vector of unknowns. The simplest first-order backward difference formula is
the implicit Euler method

F
vnþ1 � vn

tnþ1 � tn
; vnþ1; tnþ1


 �
¼ 0; ð33Þ

in which equation (32) is approximated by finite differences (Brenan et al. 1988). In the
present work we used a fourth- and fifth-order generalization of equation (33) coded in
MATLAB [see, Roberts (1998)].
All numerical simulations were performed with the main geometrical, physical and

modal parameters presented in Tables 3 and 4. The time-step used, 4t ¼ 0005, was one
order of magnitude smaller than 1=ð2fmaxÞ, with fmax � 20 Hz (maximum frequency of
interest).
Two main sets of numerical simulations were performed. The first one using a small-

storage pool with a single centered rack and the second one using a pool with ten racks
regularly stored in 2 lines and 5 columns.

4. RESULTS AND DISCUSSION

The response of single centered rack to an impulsive excitation is displayed in Figure 2.
Comparing the frequency response in air fs ¼ 2 Hz, Figure 2(a), and in water
fwat ¼ 148 Hz, Figure 2(b), one finds:

Madd

Ms
� 0825; ð34Þ
Table 3

Main geometrical parameters for the nu-
merical simulations

LX (m) 2
LY (m) 2
Hh

i ; 1� i � M þ 1 (m) 02
Hv

j ; 1� j � N þ 1 (m) 02

Table 4

Physical and modal parameters for the numerical simulations

Structural mass, Ms (kg) 32 000
Structural damping, Cs ðN s=mÞ 8 000
Structural stiffness, Ks (N/m) 5� 106

Modal frequency in air, fs (Hz) 2
Reduced damping in air, z 001
Rack density ðrs=rwatÞ 8
Density of glycerol, ðrgly=rwatÞ 1264
Dynamic viscosity of water, mwat ðN s=m2Þ 12� 10�3

Dynamic viscosity of glycerol, mgly ðN s=m2Þ 15
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where Madd stands for the added mass corresponding to the fluid–structure effect. Observe
that such a ratio for an immersed centered cylinder presenting the same annular gap and
fluid volume (that is with an average gap of H ¼ 02 and with an equivalent diameter
D ¼ ð4=pÞðL þ HÞ � H) yields

Madd

Ms
¼

rwatD
rs2H

¼ 0813:

This quantity is similar to equation (34), as would be expected. Note that the ratio
obtained in equation (34) suggests the following relationship for the added mass (per unit
length) of a single centered square rack:

Madd ¼ r
2

3

L3

H
: ð35Þ
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Figure 2. Storage pool with a single rack; responses in direction X (solid) and Y (dashed): (a) response in air
to an impulsive force applied in direction X ; (b) response in water when the force is applied in direction X ; (c)

response in water when the force is applied along the rack diagonal.
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In fact, equation (35) can be deduced from the system dynamic model for M ¼ 1 and
N ¼ 1; presented in Appendix A, by letting Y11 ¼ ’YY11 ¼ .YY11 ¼ 0. This can be done by
inspecting the coefficient of ’ZZ11 in equation (A3) after substituting the pressure terms by
those resulting from equations (A8) and (A9). In these manipulations a time derivative of
equation (A5) is fundamental, because it relates ’ZZ11 and ’CC

X

11; as well as the assumption
’CC
Y

11 ¼ ’CC
Y

12 ¼ 0 coming from Y11 ¼ 0. Similar expressions for the corresponding added
mass can be found in Ren & Stabel (1999).
Comparing Figures 2(b) and 2(c), we conclude that the modal response frequency of our

system is the same, whether we apply the excitation in direction X or along the rack
diagonal. Geometric arguments are in agreement with this fact.
Figure 3 displays the behavior of our system in water letting a ¼ 0, Figure 3(a),

considering a ¼ 12mwat=H, Figure 3(b), and in glycerol with a ¼ 12mgly=H, Figure 3(c); i.e.,
respectively, without fluid dissipative effects (in water) and with dissipative effects in water
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Figure 3. Storage pool with a single rack; response to an impulsive force applied in direction X: (a) a ¼ 0; (b)
a ¼ 0072 (water); (c) a ¼ 90 (glycerol). }, Response in the X-direction; - - -, response in the Y-direction.
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and glycerol. No significant differences can be detected between 3(a) and 3(b). This means
that fluid dissipative effects are not significant for this particular system, in water. It can be
shown that only for much lower ratios rs=r or much larger fluid viscosities, fluid
dissipative effects become significant. Such is the case of our system in glycerol. Note that
for this denser fluid, the observed frequency response is only fs ¼ 140 Hz. This result is
consistent with equation (35).
In the next set of numerical simulations, we display the behavior of 10 racks regularly

stored in 2 lines and in 5 columns.
In Figure 4, the cumulated spectral responses of the racks to an impulsive excitation

applied on rack ð1; 1Þ is displayed: (a) response in air, (b) response in water along direction
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Figure 4. Storage pool with 2� 5 racks: Cumulated spectral responses to an impulsive excitation applied on
rack ð1; 1Þ along direction X: (a) in air; (b) and (c) in water along each main direction.
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X and (c) response in water along direction Y . Letting Xij and Yij be the time responses of
each rack, the cumulated spectral responses can be computed as follows:

SX ðoÞ ¼ max
ij

ðjF½XijðtÞ
jÞ; SY ðoÞ ¼ max
ij

ðjF½YijðtÞ
jÞ;

where F is the Fourier transform, 1� i � 2 and 1� j � 5. Note that, as a result of the
applied force, the system displays many different coupled modes in the range between 1
and 2 Hz.
In Figure 5 one can see the (scaled) rack trajectories. All racks display motions in both

directions, as a result of the fluid coupling and nonsymmetric excitation.
Finally, in Figure 7, one observes a numerical simulation of the seismic response of our

system, to the east–west component of the Loma Prieta earthquake in October 17, 1989.
The trace (accelerogram) was taken and supplied by the Natural Sciences Laboratory at
U.C. Santa Cruz and is displayed in Figure 6. Again, we display the cumulated spectral
response to the above-mentioned excitation applied along the X-direction: (a) computed
from the rack responses along direction X and (b) from the rack responses along direction
Y , respectively. In spite of the excitation being the same on each rack and only along
direction X , we note that the system also exhibits motions perpendicular to this direction.
This is accounted for by the presence of a strong fluid–structure interaction. Once can also
confirm this fact by observing the (scaled) trajectories of each rack shown in Figure 8. One
can notice that, for the computed system, the seismic excitation is mainly ‘‘felt’’ by a
particular mode of the rack ensemble. We produced animations of the system response
which show clearly that a single mode dominates most of the rack responses, with other
modes participating only through the initial transient and final decaying stages of the
process.
Note that the symmetry of the responses shown in Figure 8 result by the fact that the

seismic excitation was applied along the X-direction (also an axis of symmetry of the
storage pool with the racks) and the racks were regularly positioned, letting between them
equal channel gaps.
We stress additionally that, in Figures 5 and 8, the trajectories presented were scaled (as

we refer in the text) in order to make them observable. In fact, the biggest amplitude
verified in those simulations was one order of magnitude smaller than the channel gaps.
Figure 5. Storage pool with 2� 5 racks: scaled trajectories of the racks exhibited as a result of an impulsive
excitation applied on rack ð1; 1Þ along direction X.
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Figure 6. East–west component of the Loma Prieta earthquake in October 17, 1989: (a) excitation
accelerogram; (b) the corresponding Fourier transform.

VIBRATIONS OF NUCLEAR FUEL RACKS 983
5. CONCLUSIONS

In this paper, we introduced a simplified linearized model for the fluid-coupled vibratory
responses of nuclear fuel racks based on the main simplifying assumptions: (i) three-
dimensional flow effects were neglected, (ii) gaps between the fuel assemblies and between
these and the container are small when compared with the longitudinal length-scales.
Using this approach, the flow was analytically formulated in simple terms, enabling
effective computation of the dynamical response of a multi-rack fluid-coupled system.
Despite the simplifications introduced, the model developed, yields qualitatively similar

predictions when compared with other recently published work [see, Broc et al. (2000)].
Besides the fact that the proposed methodology can be automatically implemented on a

symbolic computer environment, this model has the following advantages over finite



0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

X
 −

 d
ire

ct
io

n
Y

 −
 d

ire
ct

io
n

 Frequency [Hz]

(a)

(b)

Figure 7. Storage pool with 2� 5 racks. Cumulated spectral responses to the seismic excitation applied along
direction X: (a) responses along direction X and (b) responses along direction Y .

M. MOREIRA AND J. ANTUNES984
element approaches: (a) it reduces the number of degrees of freedom of the problem
enabling cheaper computations; (b) dissipative effects can be easily considered; (c)
generalizations to account for the nonlinear fluid effects, squeeze–film interaction
phenomena or even impacts are straightforward; (d) because the fluid model is not very
expensive, more realistic computations including frictional rack-supporting forces can be
pursued.
Note that, Ren & Stabel (1999) and Stabel & Ren (2001) showed that neglecting three-

dimensional flow effects can lead to an overestimation of the true added mass effects. The
strategy they use, to account for three-dimensional flow effects, was to introduce flow split
factors relating the vertical and the horizontal flows inside the channels between racks, in
order to minimize the overall fluid energy.



Figure 8. Storage pool with 2� 5 racks: scaled trajectories of the racks resulting from a seismic excitation
applied along direction X.
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The introduction of three-dimensional flow effects into the proposed formulation is
currently being addressed. The inclusion of nonlinear extensions and experimental
validation is also being prepared.
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APPENDIX A: SYSTEM DYNAMIC MODEL FOR M ¼ 1 AND N ¼ 1

(a) Fluid-structural equations:

’XX11 � Z11 ¼ 0; ’YY11 � W11 ¼ 0; ðA1;A2Þ
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(b) Flow compatibility equations:
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(c) Pressure compatibility equations:
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(d) Pressure reference equation:

pX
11ð0; tÞ þ pX

21ð0; tÞ þ pY
11ð0; tÞ þ pY

12ð0; tÞ ¼ 0: ðA12Þ

APPENDIX B: NOMENCLATURE

CX
ij ðtÞ;C

Y
ij ðtÞ fluctuating terms of the fluid velocity

Cs structural damping per unit length
fs structural frequency in the air
FX

ij;aut;F
Y
ij;aut X- and Y-direction external forces

FX
ij ;F

Y
ij X- and Y-direction fluid-elastic forces

X ;Y subscripts for X- and Y-direction channels
hX

ij ðtÞ; h
Y
ij ðtÞ actual channel gaps

H;HX
i ;H

Y
j average channel gaps

i; j line and column subscripts
Ks structural stiffness per unit length
L;LX ;LY main dimensions of each rack
Madd fluid added mass per unit length
Ms structural mass per unit length
pX

ij ðy; tÞ; p
Y
ij ðx; tÞ gap-averaged pressures

t time
uX

ij ðy; tÞ; u
Y
ij ðx; tÞ gap-averaged fluid velocities

XijðtÞ;YijðtÞ relative rack motions
x; y spatial coordinates along the horizontal and vertical channels
X0

ij ðtÞ;Y
0
ij ðtÞ rack positions with respect to the pool container

*XXijðtÞ; *YYijðtÞ absolute positions of the racks
z;w generic longitudinal and transverse spatial coordinates
ZijðtÞ;WijðtÞ time derivative of rack motions
a damping parameter
m dynamic viscosity of the fluid
r fluid density
rs rack density
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